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CASCADE IMPEDANCE SYNTHESiS USING A N  EXTENSION OF 

THE FIALKOW-GERST THEOREM 

by John P, Barranger 

Lewis Research Center 

SUMMARY 

A new driving point impedance synthesis is found based on an extension of the 

Fialkow-Gerst Theorem. The resultant network is a cascade of lossless  network sec-  

tions where each section corresponds to zeros  of the even part  of the driving point im- 

pedance. The final termination is a resistance. 

If the even part  zeros  a r e  on the imaginary axis, the network consists of a reac- 

tance and a t ransformer.  The section is terminated by a combination of a resonant c ir-  

cuit  and an impedance of reduced degree. 

The network section corresponding to complex even part  zeros consists of reac- 

tances,  a t ransformer,  and a gyrator.  A reduced degree impedance terminates the 

section. The proof of the validity of this network is based on a new technique of imped- 

ance  operator even part  identification. 

An advantage of the new realization is the reduction in  the number of gyrators  used 

compared with the Fialkow-Gerst cascaded network. The synthesis is il lustrated by an 

example. 

INTRODUCTION 

The Problem 

Power conditioning sys tems and automatic control systems rely on network synthe- 

sis techniques to realize electr ic  f i l ters  and compensating networks. In many systems 

applications, power must be t ransferred to a resistive load through a lossless  network. 
One of the most important network theory problems associated with these sys tems is 
that of driving point impedance synthesis. In 1954, F iakow and Gerst (ref.  1) found a 

synthesis procedure based on a new theorem of positive r ea l  functions. The cascade 



form of the synthesis yields the desired lossless  network terminated in  a resistance. 

This report  provides a new driving point impedance synthesis based on an extension 

of the Fialkow-Gerst theorem. The network realization always consists of one o r  more 

lossless cascaded sections terminated in  a resistance. 

Definitions 

Positive r e a l  function. - A rational polynomial function Z(s) of the complex vari-  

able s is a positive r ea l  function i f  i t  satisfies the following conditions: 

(I) Z(s) is r e a l  when s is r e a l  

(2) Re {Z(s)} 2 0 when Re {s) 2 0 

where Re {Z(s)} means the r ea l  par t  of Z(s). Alternatively, Z(s) is a positive rea l  

function i f  

(1) Z(s)  is r e a l  when s is r e a l  

(2) Re {Z(s)} 2 0 when Re {s} = 0 

(3) Z(s) is analytic in  the right half s-plane 

(4) The poles of Z(s) on the imaginary axis a r e  simple with positive residues 

(All symbols a r e  defined in  appendix A. ) 
A positive r e a l  function with no poles o r  zeros  on the imaginary axis is defined a s  a 

minimum reactance function. A positive rea l  function whose r ea l  par t  vanishes a t  some 

s = j w  is defined a s  a minimum resis t ive function. A positive r e a l  function that is si- 

multaneously a minimum reactance function and a minimum resistive functioia i s  defined 

as a minimum function. 

If Z(s) is written as a quotient of polynomials in s, the degree of Z(s) is defined 

a s  the degree of the numerator o r  the denominator whichever is greater .  The even par t  

of Z(s) is defined as 

while the odd pa r t  of Z(s) is defined a s  

Driving point impedance. - Let the terminated two-port network of figure 1 be de- 

scr ibed by the following s e t  of equations: 



where zI1, zI2' z219 and z22 a r e  the open circuit  impedance parameters .  Further ,  

let the driving point impedance Z(s) be defined a s  

Substituting equations (1) to (3) into equation (4) resul ts  in 

If zI2 = z21, the network is sa id  to be reciprocal.  Brune (ref. 2) showed the very im- 

portant fact that driving point impedances a r e  positive sea l  functions. 

Figure I, - Terminated two-port network. 

Unity coupled t ransformer and gyrator.  - The unity coupled t ransformer,  shown in 

f igure 2(a), is a circuit  element that is described by the following equations: 

Since zI2 = z21, the unity coupled t ransformer is a reciprocal network. 



(a) Unity coupled t ransformer.  (b) Gyrator. 

Figure 2. - Circuit elements. 

The gyrator,  shown in figure 2(b), is a circuit  element that is described by the 

following equations 

where G is a rea l  number. Since z12 # z2%,  the gyrator is a nonreciprocal network. 

Together with the capacitor and the inductor, the unity coupled t ransformer and the 

gyrator a r e  considered lossless  networks since they do not dissipate power. 

History 

Bmne algorithm. - Brune (ref.  2) was the f i r s t  to find a procedure that would syn- 

thesize al l  driving point impedances. The Brune algorithm i s  as follows: 

( I )  The positive rea l  function i s  made minimum reactive by successive removal of 

all imaginary axis poles and zeros.  

(2) The minimum resistance is found and removed. 

(3)  The remaining minimum function is realized by using the unity coupled t rans-  

former .  

The corresponding network N of figure 1 consists of inductors, capacitors,  unity cou- 

pled t ransformers ,  and resistances.  Thus N is not a lossless network. 

Darlington synthesis. - A lossless  network terminated in  a resis tance was described 

by Darlington (ref. 3). By setting equation (5) equal to 



where m and n a r e  the even and odd functions of s, he obtained the open circuit  im- 

pedance parameters .  In some cases ,  zI2 turns out to be irrational.  Darlington solved 

this problem by multiplying the numerator and denominator of Z(s) by a polynomial in  s 
called a surplus factor .  The corresponding network N contains inductors, capacitors, 

and unity coupled t ransformers .  

Richards theorem. - In 1947, Richards (ref.  4)  showed that if Z(s) is a positive 

r ea l  function, the function R(s)  defined by 

i s  a lso a positive r ea l  function for  positive k. Although he only proved it fo r  k = 1, the 

preceding statement is usually called Richards theorem. 

Bott-Duffin synthesis.  - Bott and Duffin (ref.  5)  were the first to find a procedure 

that would synthesize a l l  positive r e a l  functions without unity coupled t ransformers .  By 
using Richards theorem, they were  able to realize a minimum resistive function in  the 

balanced bridge network of figure 3 .  Their procedure replaces s tep (3) of the Brune 

algorithm. A cascade representation of the Bott-Duffin synthesis was found by Hazony 

and Schott (ref.  6). 

Figure 3. - Network associated with Bott-Duffin synthesis. 

Fialkow-Gerst theorem. - Fialkow and Gerst (ref.  1) found a synthesis procedure 

based on a new theorem on positive r ea l  functions. Their original network realization 

was a s e t  of balanced bridge networks without t ransformers .  An equivalent cascaded 

form can also be found by using the procedure of Hazony and Schott (ref. 6).  The resul-  
tant synthesis is a cascade of lossless network sections terminated in a resis t ive load. 

An advantage of their procedure is that it does not require finding the minimum res i s -  

tance. Thus, the often difficult computation associated with the resistive minimization 

procedure is completely eliminated. 



Hazony synthesis. - Hazony (refs.  7 to 9 )  was the f i r s t  to take advantage of iteration 

of theorems on positive r ea l  functions. By applying Richards theorem twice, with k 

now complex, he found a new theorem and a new network. His theorem s ta tes  that i f  

Z(s) is a positive rea l  function, the function C1(s) defined by 

is also a positive rea l  function. The numbers A, B, C, and D a r e  a l l  positive and a r e  

given by 

where a! and p a r e  positive o r  conjugate complex with a nonnegative r e a l  par t .  

The Hazony synthesis replaces s teps  (2) and (3)  of the Brune algorithm. The resul- 

tant realization is a cascade of lossless  network sections terminated in a resistance. 

The network section associated with the theorem is shown in figure 4, where E~ is 

positive and is given by 

The network contains inductors, capacitors, unity coupled t ransformers ,  and gyrators .  



Figure 4. - Network associated with Hazony synthesis. 

Present Work 

In this report ,  a new driving point impedance synthesis is found based on an exten- 

sion of the Fialkow-Gerst theorem. The resultant realization is a cascade of lossless  

network sections terminated in a resistance. 

In the section EXTENSION OF FIALKOW-GERST THEOREM, a theorem is written 

based on applying the Fialkow-Gerst theorem twice. It is shown that the new function is 

a positive r e a l  function and is of degree not exceeding the degree of Z(s). The condi- 
t ions under which the degree can be  reduced below that of Z(s) a r e  also discussed. The 

networks corresponding to the theorem a r e  realized using three impedance operators .  

The open circuit  impedance parameters  a r e  found fo r  each operator and a l l  a r e  deter-  

mined to be realizable.  In the concluding section, the cascading of operators is dis-  

cussed and new cascaded operator networks a r e  proposed. 

In the section DRIVING POINT IMPEDANCES OF DEGREE TWO, the second degree 

driving point impedance i s  studied fo r  the case  corresponding to complex even par t  

z e r o s .  The existence of certain constants on which the validity of the synthesis depends 

i s  proved by using an extension of even part  synthesis.  The network consists of a cas- 

cade of two sections terminated in a resis tance of f ohm. 

The second degree solution of the section DRIVING POINT IMPEDANCES OF DE- 

GREE TWO is extended to driving point impedances of any degree in the section COM- 

PLEX EVEN PART ZEROS AND OPERATOR EVEN PART IDENTIFICATION. It is 
found that all Z(s) containing complex even part  zeros  may be realized by the new cas- 



Figure 5. - New network fo r  realizing complex even pa r t  zeros.  

caded impedance operator network illustrated in figure 5.  The driving point impedance 

is designated as Z(s), while c(s) denotes the tkrminating impedance. Figure 5 differs 

f rom the cascade form of the Fialkow-Gerst network in that one gyrator has been re -  

placed by the t ransformer.  

EXTENSION OF FIALKOW-GEBSI  THEOREM 

As already stated, the objective of this report is to synthesize a driving point im- 

pedance as a cascade of one o r  more network sections terminated in  a resistance. In 

this section, the power t ransfer  problem and the concept of cascaded networks a r e  r e -  

viewed. 

Let the power conditioning network be described by the doubly terminated two-port 

network of figure 6 .  The generator is represented as a voltage source E in s e r i e s  
g 

with a resistance R while the load voltage is denoted by Ed and the load resis tance 
g ' 

by Rde The network is lossless  in  order  to minimize system power losses .  Suppose 
the network is to act  as a n  electric fi l ter to attenuate unwanted generator frequencies. 

Eg 
Lossless  

Figure 6. - Doubly terminated two-port network. 



The  network can be described by comparing the power delivered to the load with the 

maximum power available from the source .  Let the ratio of these two quantities be 

designated as G(j w); that is, 

where the quantities a r e  functions of jw. Examination of figure 6 yields the resul t  

Darlington (ref.  3 )  showed that given G(jw), the driving point impedance of the network 

input, designated Z(s) in figure 6, can always be found. Thus, the power t ransfer  

problem can be effectively reformulated in t e r m s  of the driving point impedance. A 
synthesis of Z(s) therefore also yields a synthesis of G(jw). 

Let each section of a cascaded network be described by the terminated two-port net- 

work of figure 7(a). The driving point impedance is designated Z(s), while the termi-  

nating impedance is denoted by c(s). A cascaded network is a chain of two-port sections 

(a) Terminated two-port network. 

(b) Cascade of network sections terminated in a resistance. 

Figure 7. - Network termination. 



connected so  that the terminating impedance of one section is the driving point imped- 

ance of the following section. Figure 7(b) i l lustrates a cascade of network sections 

where the final terminating impedance is a resistance. It therefore represents  the ulti- 

mate network configuration. 

Connection of two-port sections in cascade places certain restrictions on the te rmi-  

nating impedance of figure 7(a). F i r s t ,  being a terminating impedance and the driving 

point impedance of the following section, <(s) must of course be a positive r ea l  function. 

Second, the degree of <(s )  is required to be no grea te r  than the degree of Z(s).  Thus, 
no section of the cascaded network of figure 7(b) is allowed to ra i se  the degree of its re-  

spective driving point impedance. This condition, however, is insufficient to  guarantee 
a final terminating impedance equal to a resistance, since no section can reduce the de- 

gree.  As a final condition on figure 7(a), then, there  must be some mechanism by 

which the degree of <(s)  can be made lower than the degree of Z(s). Thus, under ce r -  
tain circumstances,  <(s) must possess  the capability of being reduced in degree. 

Fo r  the r e s t  of this section, a theorem is discussed which meets the needs of <(s )  
and which also has a physically realizable network representation. F i r s t ,  the Fialkow- 

Gerst theorem is extended and found to conform to the requirements of <(s) .  Then the 
corresponding networks a r e  synthesized. And finally, the cascading of operators is 

discussed and new cascaded operator networks a r e  proposed. 

The Theorem 

Fialkow and Gerst (ref. 1) wrote their theorem a s  an extension of Richards theorem 

(ref.  4 ) .  The positive r e a l  function associated with Richards theorem was called R(s)  
(see section History, Richards theorem). Rewriting it in the form 

indicates that the function s /k  is a reactance. Fialkow and Gerst found that, subject 

to certain conditions, R(s)  would still be a positive r ea l  function if the reactance of a 

se r i e s  o r  parallel  resonant circuit  were used instead of s/k. They extended these 

simple reactances to a more generalized fo rm fo r  u s e  in  their theorem. 

A new theorem on positive r e a l  functions is now written based on applying the 

Fialkow-Gerst theorem twice. The original theorem corresponds to the reactance of 

equation (12) and the positive r ea l  function of equation (14). 



Theorem I: 
(1) Let a l ,  a2, . . . , ap be a s e t  of real o r  complex numbers having Re {ai} > 0 

(where i = 1, 2, . . . , p) and such that the complex ai occur in  conjugate complex 

pa i rs .  Let the function 

be defined. Further ,  let bl, b2, . . ., b be a s e t  of r ea l  o r  complex numbers having 
q 

Re {b.} > 0 (where j = 1, 2, . . . , q) and such that the complex b occur  in conjugate 
J j 

complex pa i rs .  Let the function 

r[ (S + b j ) + n  (s - b.) J 

j = l  j = l  
Z,(s> = 

a lso  be defined. Then Zl(s) and Z2(s) a r e  reactances. 

(2) Let Z(s) be a positive r e a l  function of degree n. If Z(ai) = C1 > 0 (where 
i = 1, 2, . . . , p) and z i ( b j )  = C2 > 0 (where j = 1, 2, . . . , q), where C1 and C2 

are constants, 

and 

a r e  positive r ea l  functions. 

Proof: 

Fialkow and Gerst proved that Zl(s) of equation (12) is a reactance and Z i ( s )  of 



equation (14) is a positive rea l  function. Their  resul ts  a r e  used herein to prove the ex- 

tensions represented by equations (13) and (15). In equation (13), Z2(s) is of the s a m e  

form a s  Zl(s) except al, a2, . . . , ap has been replaced by bl, b2, . . . , bq.. Thus 

Z2(s) i s  a lso a reactance. This proves P a r t  ( I )  of the theorem. 

For  P a r t  (2), if equations (15) and (14) a r e  compared, z ~ ( s )  is of the s a m e  form as 
~ i ( s )  except that Z1(s), Z(s), and C1 have been replaced by Z2(s), z i ( s ) ,  and C2, 

respectively. Since Z i ( s )  is a positive r e a l  function, ~ i ( s )  i s  a lso a positive r ea l  func- 

tion. This completes the proof of the theorem. 

Stated in a less  formal  way, the preceding theorem s ta tes  that under certain condi- 

tions, if Zl(s) and ZZ(s) a r e  reactances,  there exist functions Z i ( s )  and Z ~ ( S )  that 

a r e  positive r ea l  functions. Suppose now that the terminal impedance ((s) of figure 7(a) 

is associated with the new functions. Suppose also that <(s) is made equal to  a constant 
t imes Z i ( s )  o r  Zh(s). Since the latter functions a r e  positive r e a l  functions, it follows 

that c(s) is also a positive r ea l  function. Similarly, i f  ( (s)  is made equal to  a constant 

t imes the reciprocal of z;(s) o r  z ~ ( s ) ,  {(s) is also a positive r ea l  function. Thus, the 

functions corresponding to Theorem I meet  the first requirement of {(s). 
Fo r  the second condition fo r  ((s), it must be shown that the degree of zi(s) and 

Z i ( s )  is at most equal to n, the degree of Z(s). Finally, it must also be shown under 

what circumstances the degree of ~ i ( s )  and Z i ( s )  can be reduced below n. 

According to equations (12) and (14), the degree of Z;(S) is n + p since the degree 

of Z(s) is n and the degree of Zl(s) is p. Fialkow and Gerst proved that the product 

is always a common factor of the numerator and denominator of Zi (s ) .  Consequently, 

when these factors  a r e  canceled, the degree of Z i ( s )  reduces to n + p - p o r  n. Simi- 

larly, s ince the degree of the uncanceled Z i ( s )  is n + p, by equations (13) and (15), the 

degree of Z;(s) i s  n + p + q. Extending the resul ts  of Fialkow and Gerst,  the product 

is a common factor of the numerator and denominator of z ~ ( s ) ,  and after cancellation 

the degree of Z ~ ( S )  reduces to n + p + q - (p + q) o r  n. Thus, since the degree of both 

Z i ( s )  and Z i ( s )  is a t  most n, the degree of the associated terminal impedance [(s) is 
a t  most n. 



Now the final task is to determine the conditions undel' which the degree of Z;(s) o r  

Z i ( s )  can be reduced below the degree of Z(s).  Fialkow and Gerst proved that the de- 

gree  of Zi (s )  can be reduced below n if and only if the number ai fo r  some i = 1, 
2, . . . , p is a zero  of the even part  of Z(s). If there a r e  r such numbers, the de- 

g ree  is reduced to  n - r; that is, if all other conditions a r e  met, the degree of c(s)  in 
f igure 7(a) is less  than the degree of Z(s) when ai is chosen s o  a s  to  be equal to a zero  

of the even part  of Z(s).  Thus, fo r  the cascaded network of figure 7(b), each section 

that reduces the degree corresponds to one o r  more ze ros  of the even part  of Z(s). 
A similar  condition can be obtained for  Z i ( s ) .  By extending the preceding resul ts ,  

the degree of Z i ( s )  can be reduced below n i f  and only if the number ai fo r  some 

i = 1, 2, . . . , p o r  the number b. f o r  some j = 1, 2, . . . , q is a zero  of the even 
J 

pa r t  of Z(s). If there  a r e  t such numbers, the degree is reduced to n - t .  F o r  the 

cascaded network of figure 7(b), each section that reduces the degree corresponds to one 

o r  more  zeros  of the even part  of Z(s). 
Fialkow and Gerst a l so  showed that if ai does not correspond to  a zero of the even 

par t  of Z(s), the even par t  zeros  of Z(s) and z;(s) a r e  identical. 

Network Synthesis 

In the previous section, Theorem I was shown to provide a powerful tool fo r  the de- 

termination of c(s),  the terminating impedance of figure 7(a). It was also shown that 

under certain conditions, the degree of c(s)  can be made lower than the degree of Z(s).  
This  is really only half the s tory  s ince c(s)  is useless  without an  associated network N 

which is also physically realizable. It is the purpose of this section to synthesize real- 

izable networks that correspond to Z i ( s )  and Z i ( s )  of Theorem I. At this point, all the 

conditions of Theorem I a r e  assumed to be  satisfied; that is, there exist  numbers al, 
a2, . . . , ap, b19 b2, . . . , b , C1, and C2 that meet the requirements of the theorem. 

q 
Proofs  of the existence of these numbers and procedures to find them a r e  discussed 

la te r .  

Fo r  the sake of completeness, Theorem I was written in its most general form. It 

is most convenient, however, to use  more  restr ic ted versions of the theorem. All the 

synthesis procedures developed in this report  fall  under one o r  more  of the following 

th ree  special cases:  

Special Case 1: 

If p = 1 and al = k > 0, then by equation (12) 

s z (s) = - 
l k  



and ~ ; ( s )  reduces to 

Equation (17) is recognized a s  the function associated with Richards theorem. 

Special Case 2: 
If p = 2, the reactance Zl(s) becomes 

where a l  and a 2  a r e  a pair of conjugate complex numbers having positive real  parts.  

The impedance Zi(s)  can be written 

Special Case 3:  

If p = q = 1 and al  = bl = a > 0, Z;(S) becomes 

Since C1 = Z(a), C1 may be easily evaluated from Z(s) for  any a .  For  the evaluation 

of C2, the following equation is written using equation (14): 

C2 = Zi(a)  = lim ~ ' ( s )  = lim sZ(s)  - aZ(a) 
s-a s-a sZ(a) - aZ(s) 

If the limit is taken, C2 is indeterminate of the form 0/0. Using L '~ospi ta1 ' s  rule 

results in 



S- d Z @ ) +  Z(s) 

C - l im ds  

- s-a dZ(s)  Z(a) - a - 
ds 

Equation (21) can be used fo r  the evaluation of C2. 

Now the network realizations a r e  found for  Special Cases 1, 2, and 3,  just dis- 

cussed. Impedance operator methods (refs .  8 to 11) a r e  utilized to find the networks 

corresponding to  N of figure ?(a).  

First, let Z(s)  be minimum reactive. This can always be  achieved by successive 

removal of s e r i e s  and shunt reactances. It  was shown ea r l i e r  (see section Definitions, 

Driving point impedance) that the driving point impedance of the two-port network of fig- 

u r e  1 o r  figure 7(a) can be  written in t e rms  of the open circuit  impedance parameters  in 

the form 

where c is the network terminating impedance. Let an  impedance operator V(s) be 

defined a s  

that is, the impedance operator is equal to the driving point impedance with the network 

terminating impedance equal to 1. Thus, the synthesis of Z(s) consists of, f i r s t ,  real-  

izing a network corresponding to V(s) and, second, setting the load impedance equal 

t o  <. 
The balance of this section is divided into two parts :  two operators for  Z i ( s )  a r e  

discussed in  Part (1) and one operator for  z ~ ( s )  is discussed in  P a r t  (2). 

(1) Operators fo r  Zi (s ) .  These operators correspond in general to  equations (12) 

and (14), and in  particular to Special Cases 1 and 2. Rewriting Z(s) f rom equation (14) 

gives 

where  Zl(s) is obtained f rom equation (12), (16), o r  (18). Now the two equations for  

Z(s) (eqs. (22) and (24)) a r e  compared. The impedance < can be identified with 

c l ~ i ( s ) ,  s ince Z i ( s )  has been shown to be a positive r ea l  function. Now let the f i r s t  



impedance operator be defined a s  

where has been replaced by C ~ Z ~ ( S ) .  Identifying the remaining t e r m s  in equations 

(22) and (24) yields 

The t ransfer  impedances z12 and zX1 can be  chosen a s  

C z (s) + C1 z12 = 1 1 

221 = CIZ1(s) - c1 

These identifications a r e  valid if  and only i f  the resultant network is realizable. Fig- 

u r e  8 represents  the lossless  network corresponding to Vl(s). Since C1 > 0 by 

hypothesis i n  Theorem I, and Zl(s) is a reactance, the network is realizable and the 

identification is valid. 

Figure 8. - Cascade network realization of 

Fialkow-Gerst theorem using operator 

V1(s). 



Equation (24) can be rearranged to wri te  Z(s) as 

Now let the second impedance operator be defined as 

where t has been replaced by C1/z;(s). Identifying corresponding t e r m s  in equations 

(22) and (26) resul ts  in 

The t ransfer  impedances z12 and z21 can be  chosen as 

Figure 9 represents  the lossless  network corresponding to V2(s). Since C1 > 0 by 

hypothesis in Theorem I, and s ince l /Zl(s)  is a reactance, the network is realizable 

and the identification is valid. 

Since figures 8 and 9 a r e  realizations corresponding to z;(s), they a r e  called the 

cascade circuit  representations of the Fialkow-Gerst theorem. 



Figure 9. - Cascade network realization of 

Fialkow-Gerst theorem using operator 

V,(s). 

(2) Operator for  Zi (s ) .  This operator corresponds to Special Case 3 .  Rewriting 

Z(s) f rom equation (20) resul ts  in  

Now let the impedance operator for  this case  be defined as 

where has been replaced by (C1/C2)Zi(s). Identifying corresponding t e r m s  in equa- 

tions (22) and (28) gives 



The  t ransfer  impedances z12 and z2 can be chosen as 

The  network corresponding to V3(s) is shown in figure 10. This realization was first 

described by Murdoch in reference 10, section 3 .4  By definition of the unity coupled 

t ransformer,  the t ransformer has unity coupling since its z12 is the square root of the 

product of the pr imary  and secondary inductances. Since a, C1, and C2 a r e  positive 

by hypothesis in Theorem I, the network is realizable and the identifications a r e  valid. 

Figure 10. - Network realization of V3(s). 

A New Cascaded Operator Network 

In the section Network Synthesis, a number of networks were  synthesized cor re-  

sponding to  Z i ( s )  and Zi(s) .  The impedance operators were  t reated separately and in- 

dependently. The question a r i s e s  as to whether there exists a combination of two oper- 

a to r s  that might be more advantageous together than individually. Fialkow and Gerst  

found some combinations that proved to  be useful for  their  purposes. Figures l l ( a )  and 

(b) represent  two such cascaded operator networks. They a r e  important networks due to 

the i r  versatility as sections fo r  cascaded network synthesis. The networks can be used 



(a) Series resonant. 

(b) Parallel resonant. 

Figure 11. - Fialkow- Gerst cascaded operator networks. 

a s  is o r  certain network elements can be deleted to synthesize a l l  driving point imped- 

ances. Murdoch (ref. 10) gives a detailed account of a number of different cascaded 

operators. 

New cascaded operator networks a r e  now proposed, a s  illustrated in figures 12(a) 

and (b). Pa r t  of the networks a r e  recognized as figure 10, the network realization of 

operator V3(s). Comparison with figure 11 shows that one of the gyrators has been re-  

placed by a transformer. 

It is the purpose of the r e s t  of this report to prove that a l l  driving point impedances 

can be realized by using figure 12 o r  modifications thereof. Specifically, i t  must be 

shown that element values can always be found that a r e  physically realizable. Since 

these values a r e  related to  the constants of Theorem I, conditions under which the 

theorem can be applied a r e  in fact being determined. 



(a) Series resonant, 

(b) Paral lel  resonant. 

Figure 12. - New cascaded operator networks. 

D R I V I N G  P O I N T  I M P E D A N C E S  O F  DEGREE T W O  

A number of cascade network representations for  the extension of the Fialkow-Gerst 

theorem were found by assuming that all  the conditions of Theorem I had been satisfied; 

that is, there existed numbers al,  a2, . . . , ap; bl, b2, . . . , b ; C1; and C2 that met 
q 

the  requirements of the theorem. Since these numbers a r e  to be used for the cascade 

synthesis of figure 7(b), they must also be chosen so a s  to reduce the degree of the asso- 

ciated terminal impedance. Thus, the numbers must perform the dual role of meeting 

the explicit requirements of the theorem a s  well a s  degree reduction. The purpose of 

the remainder of the text is to prove the existence of these numbers and to find proce- 

dures for  their evaluation. 

Suppose that Z(s) has been made minimum reactive by removal of al l  the imaginary 

axis poles and zeros.  The zeros of the even part of Z(s) can be written a s  the values 



of s that satisfy 

If Ev {Z(s)} is expressed a s  a ratio of polynomials of s and since Z(s) is minimum 

reactive, the zeros of the even part  a r e  also the zeros of the numerator of the even part. 

It is known that the numerator of the even part of Z(s) is a polynomial of degree 2n, 
whose zeros lie symmetrically about both the rea l  and imaginary axes. Further,  a l l  the 

imaginary axis zeros a r e  of even multiplicity. For these reasons, al l  even part  zeros  

must fall under one of the following categories: 

(1) Real even part zeros. These zeros occur in pairs and have symmetry about the 

imaginary axis. The positive r ea l  even part zero will be designated a s  u, where u > 0. 

(2) Imaginary even part zeros.  Since these zeros possess symmetry about the rea l  

axis, the imaginary even part zero can be designated a s  jv, where v + 0. 
(3 )  Complex even part zeros. These zeros lie symmetrically about both the r ea l  

and imaginary axes. Therefore, the complex even part  zeros with a positive r ea l  part  

can be designated a s  u + jv, where u > 0 and v # 0. 
Networks for the case corresponding to complex even part zeros a r e  developed in 

this section and in the section COMPLEX EVEN PART ZEROS AND OPERATOR EVEN 

PART IDENTIFICATION. The results a r e  extended to include the imaginary even part 

zeros (category (2)). Real even part zeros can be synthesized by direct application of 

any of the operators of the section EXTENSION OF FIALKOW-GERST THEOREM. The 
driving point impedances of degree two a r e  discussed in this section, and the results  a r e  

extended to impedances of any degree in the section COMPLEX EVEN PART ZEROS AND 

OPERATOR EVEN PART IDENTIFICATION. 

One reason the driving point impedances of degree two is studied is the fact that all 

impedances can be reduced to a form similar  to the second degree case. Thus, t reat-  

ment of the simpler second degree driving point impedance points the way to the solution 

of the more complex situation. (See section COMPLEX EVEN PART ZEROS AND 

OPERATOR EVEN PART IDENTIFICATION. ) 
The complex even part zero is designated by u + jv, where u > 0 and v # 0. Be- 

cause of the positive real  function character of Z(s), Z(u + jv) can be positive o r  can be 

complex with a positive r ea l  part. When Z(u + jv) is positive, Zi (s )  is shown to be 

found directly from equation (19) and the network corresponds to figure 8 o r  9 with the 

terminating impedance equal to a resistance. If Z(u + jv) is complex, it  is shown that 

the realizations a r e  the cascaded operator networks of figures ll(a) and 12(a), where 

c(s) has been set  to 1 ohm. 

In the next section, important coefficient conditions a r e  found corresponding to Z(s) 



of degree two. The cases  for  positive and complex Z(u+ jv) a r e  discussed in subsequent 

sections.  

Coefficient Conditions 

Analysis of all realizable functions of second degree requires  the complete descrip- 
t ion of the functions in their most general form. In appendix B i t  is shown that all sec-  
ond degree driving point impedances can be written in the fo rm 

where  the coefficients a, b, c, and d a r e  positive numbers. l The even part  of Z(s) 
can be written 

2 4 
Ev{Z(s)) = Z(s) + Z(-s) - 1 + s (b + d - ac)  + s bd - 

2 2 
(3 1) 

(1  + s2d)2 - (sc)  

Completing the square in the numerator gives equation (31) in  the form 

where  

Thus equation (32) is the even part  of Z(s) in  t e r m s  of the coefficients of equation (30). 
In order  to find the first coefficient condition, the fact that Z(s) is a positive r e a l  

function is used. It  was stated in  the section Definitions that Z(s) is a positive r e a l  
function only if 

Re {Z(s)} 2 0 when Re {s} = 0 (34) 

If s = j w,  equation (34) can be  written as 

Re {Z(j w)} 2 0 (35) 

1 ~ h e  le t ter  a, in this section only, is used to represent  oue of the coefficients of 

Z(s) . The constant a, associated with equation (20) is designated ao. 



and s ince 

then by equation (32), equation (35) becomes 

Now since b, c, and d a r e  positive numbers, equation (37) can be t rue  f o r  a l l  w if 

and only if the coefficient condition 

is satisfied. In equation (38), the equality sign corresponds to zeros  of the even par t  on 

the imaginary axis.  

The second coefficient condition is found by first noting that the ze ros  of the numer- 

a tor  of the even par t  satisfy 

The four ze ros  of the even part  of Z(s) a r e  therefore 

Since zeros  of the even part  that have an imaginary part  not equal to zero  (v f 0) a r e  be- 

ing dealt with, the coefficient condition 

must be satisfied. Combining conditions (38) and (41) gives 

fo r  all Z(s) having an even part  zero  with a nonzero imaginary part .  Note that the right 

inequality of equation (42) was obtained f rom consideration of the positive r ea l  function 

character  of Z(s) and therefore is t rue  for  all Z(s) of degree two. The left inequality, 



however, does not apply to a l l  Z(s) since it was derived only f o r  even part zeros that 

a r e  not located on the rea l  axis. For  complex even part zeros with a positive rea l  part,  

equation (42) becomes 

The inequalities of equation (43) play an important role in the proofs of the following 

sections. 

Complex Even Part Zeros wi th Z (u  + jv) Positive 

Since Z(u + jv) = C1 is positive, Theorem I can be directly applied. The identifi- 

cations in Special Case 2 of the Network Synthesis section, a l  = u + jv and a2 = u - jv 

a r e  used in equations (18) and (19) to give 

and 

respectively. The network synthesis is the same as  the one given in the section 
Operators for z ~ ( s ) ,  where the network corresponds to figure 8 o r  9. Since a l  and 

a2 correspond to two zeros of the even part,  the degree of z ~ ( s )  is two less than Z(s), 

and the termination is now resistive. The rest  of this section is devoted to finding spe- 

cific values for  the components of the networks in te rms of the coefficients of Z(s). 
First ,  Zl(s) and z ~ ( s )  must be determined in te rms of the coefficients of Z(s). 

Since by equation (40) 

the definitions for u and v can be written a s  



Equations (44) and (45) now become 

and 

respectively. Thus, Zl(s) and Z ~ ( S )  a r e  expressed in terms of the coefficients of 

Z(s). 
Synthesis of the networks of figures 8 and 9 from equations (48) and (49) could pro- 

ceed, but when Z(u + jv) > 0, there is another constraint on the coefficients of Z(s) in 
, addition to the one associated with equation (43). Letting s = u + jv in equation (30) re- 

sults in 

2 
C1 = Z(u + jv) = 1 + (U + jv)a+ ( u +  jv) b 

2 1 + (U + jv)c + (U + jv) d 

Taking the imaginary part of Z(u + jv) shows that 

2 2 v[(bc - ad)(u + v ) + 2u(b - d) + a - c] 
Im {Z(u + jv)} = 

2 
(5 1) 

[I + uc + (u2 - v2)dI2 + v2(c + 2ud) 

Since Z(u + jv) > 0, equation (51) must be equal to zero. The denominator of 

Im {Z(u + jv)} cannot be zero by virtue of the fact that c + 2ud > 0. Thus, the numer- 
ator  of equation (51) must satisfy the condition 



2 Replacing u + v2 and u by their values f rom equation (47) gives equation (52) in  the 

form 

o r  af ter  factoring 

Since v f 0 by hypothesis, and since the t e r m s  in  the first bracket a r e  all positive, 

equation (54) can be t rue  if and only i f  b = d. Thus, the condition Z(u + jv) > 0 has 

been shown to imply that b = d. 
The task of finding network component values remains.  If b = d, e = 6 and 

C1 = Z(u + jv) = a. Equations (48) and (49) can be used to wr i te  Zl(s) and z;(s) as 

and 

Replacing Z(s) by equation (30) gives equation (56) in  the form 

Thus, the degree of the terminating impedance has been reduced to zero, two l e s s  than 

Z (s), the driving point impedance. 

The networks corresponding to figures 8 and 9 a r e  given in figures 13(a) and (b). 
Al l  the element values a r e  in t e rms  of the coefficients of Z(s), and the terminations a r e  

resis tances.  



(a) Series resonant. 

(b) Paral lel  resonant. 

Figure 13. - Fialkow- Gerst network realization 

for  Z(s) of degree two when Z(u + jv) is positive. 

Complex Even Part Zeros wi th  Zlu + jv) Complex - Even Part Identif ication 

Since Z(u + jv) = C1 is not positive, Theorem I cannot be applied directly. Instead, 
procedures a r e  used in which the network realization consists of the cascaded operator 

network discussed in the section A New Cascaded Operator Network. 

This section is divided into two parts.  Pa r t  (1) shows that Z(s) can be realized a s  

the cascaded operator network of figure 1 l (a)  with the terminating impedance equal to a 

resistance of 1 ohm. The synthesis is arrived a t  by using Special Case 1 followed by 

Special Case 2 ,  discussed in the section Network Synthesis. Although this was also 



shown by Fialkow and Gerst, a new proof is developed based on even part identification. 

The new proof is also used in Par t  (2) where it is shown that Z(s) can be realized =.s the 

new cascaded operator network of figure 12(a) where the terminal impedance is again a 

resistance of 1 ohm. That synthesis can be achieved by using Special Case 3 followed by 

Special Case 2. 

(1) The second degree driving point impedance is written in the form 

The inequality b # d is an added constraint since it was shown previously that b = d 

implies Z(u + jv) > 0, which contradicts the hypothesis that Z(u + jv) is complex. Sup- 

pose the synthesis of equation (58) is the cascade of the two network sections shown in 

figure 14. Section 1 is obtained from figure 9 by applying Special Case 1 of the section 
Network Synthesis and equations (16) and (17). The value of C1 is Z(k), where k is 
arbi trary and yet to be determined. The impedance terminating network Section 1 is 
given by 

In general, Z3(u + jv) is complex if Z(u + jv) is complex. The arbitrariness of k can 

be  removed by assuming that a value of k can be found that forces the imaginary part  

Section 1 Section 2 

Figure 14. - Fialkow-Gerst network realization for Z(s) 
of degree two when Z(u + jv) is complex. 



of Z3(u + jv) to  be zero.  Under this  condition Z3(u + jv) is now positive and Section 2 

can be constructed by using Special Case 2 and figure 8 a s  detailed in the preceding sec-  

tion. The identifications al = u + jv and a2 = u - jv a r e  used to obtain Zl(s) f rom 

equation (48) since the even part  zeros  of Z3(s) and Z(s) a r e  identical. The quantity 

C3 is defined by 

C3 = Z3(u + jv) 

The terminating impedance is a resistance s ince a l  and a2 were chosen to correspond 

to zeros of the even part  of Z(s). 
As indicated previously, the validity of figure 14 depends on the existence of a value 

of k such that C3 is positive. The balance of this par t  is devoted to  proving this can 

always b e  done. F i r s t ,  Z(s) is augmented by a surplus factor and then the even par t  of 

the augmented Z(s) is identified with the even part  of Z(s) obtained f rom figure 14. 

In equation (58), augment Z(s) by multiplying the numerator and denominator by the 
factor s + k, where k > 0. The driving point impedance now becomes 

where 

2 2 m l = ( l + s  b ) k + s  a 

2 nl = s(1 + s b + ak) 

2 2 m 2 = ( l + s  d ) k + s  c 

2 n2 = s(1 + s d + ck) 

Using the definition of the even par t  of Z(s) resul ts  in 

A comparison of equations (60) and (32) shows that additional even par t  ze ros  now exist 

at s = *k. 
It is known that any driving point impedance can be found f rom its even part  ( refs .  

30 



12 and 13). Further ,  if the impedance is a minimum reactance positive r e a l  function, 

Z(s)  found in this way is also unique. Since Z(s) of equation (59) is being identified with 

the Z(s) of figure 14, the even part  of Z(s), equation (60), can also be identified with 

the even part  of Z(s) obtained from an analysis of the network. 

Network Section 1 of figure 14 can be described by the equation 

while the analysis of network Section 2 yields the relation 

Combining equations (61) and (62) resul ts  in 

where  

and the even par t  of Z(s) becomes 

[(1 + s2 a)2 - s2e2](k2 - s2) 
Ev {Z(s)) = 



To identify equation (64), the even part of Z(s) obtained from the network, with equa- 
tion (60), the even part of Z(s) found from augmenting Z(s), note first ,  that the numer- 
ators  a r e  identical and, second, that both denominators a r e  of the form 

where m and n a r e  even and odd polynomials of s, respectively. Identifying the even 
polynomials m2 and m4 of equations (60) and (64), respectively, gives 

and equating corresponding coefficients of like powers results in 

Solving for C3 in equation (66) results in 

Similarly, identifying the odd polynomials n2 and n4 gives 

2 s ( l  + s d +  ck) = s 

and equating corresponding coefficients results in 

Again solving for  C3 in equation (68) results in 



kCle 
C - 

- C1(l + ck) - 1 
(70) 

Replacing C1 with its value f rom equation (69) resul ts  in equations (67) and (70) in the 

form 

and 

respectively. 

In order  to prove the existence of a positive k, it would be convenient to  have an 

equation in  t e rms  of k and the coefficients of Z(s). Equating (71) and (72) gives 

2 where equation (33) has been used fo r  e . Since b # d is a constraint on Z(s), divide 

by - 1. Thus, equation (73) becomes 

Now it can be proved that a positive k exists which satisfies equation (74). There  a r e  

a number of ways of showing this fact,  f o r  instance, solving for  k reveals that one 

positive root exists: 



Clearly, k possesses one positive and one negative root. Descarte's rule of signs 
yields the same result. Another method is the change of sign technique. This method 
is applied by letting the right side of equation (74) be designated g(k); that is, 

where k is now considered a parameter. At k = 0, 

g(w) = lim g(k) = +w 
k-w 

Thus, a t  k = 0, g(0) is a negative number, while a s  k approaches w, g(k) approaches 
w. Hence, since g(k) is a continuous function of k, there exists a value of k = k 0' 
where 0 < ko < m, such that g(ko) = 0. To put i t  another way, g(k) crosses the axis a t  
least once a s  k varies from 0 to w. 

It was stated before that the realization of Z(s) by figure 14 is valid if a positive k 

and a positive C3 can be found. Knowing now that a positive k exists i t  can easily be 
proved that C3 is also positive. Since b # d in equation (58), either b < d o r  b > d. 
Examining equation (71) shows that if  b < d, since k > 0, C3 is also positive. Simi- 
larly, in equation (72), if b > d, C3 is again positive. Thus, C3 is always positive 
regardless of the relative magnitudes of b and d. 

Pa r t  (1) has proved that figure 14 is indeed a valid representation of Z(s) of equa- 
tion (30) when Z(u + jv) is complex. Moreover, i t  has been shown that there exists a k 
such that Zg(u + jv) is positive. 



(2) In this par t  it is shown that Z(s) can be  realized as a cascade of two networks, 

one containing a t ransformer and one containing a gyrator.  Let the synthesis of equa- 

tion (58) be the one shown in figure 15. Network Section 1 is obtained from figure I0 by 

applying Special Case 3 of the Network Synthesis section and equation (20). The value 

of C1 is Z(ao) and the value of C2 is z i ( a0 )  which can be found by using equation (21) .  

The impedance terminating network Section 1 is 

Using the s a m e  reasoning as in P a r t  ( I ) ,  it is assumed that a value of a. can be found 

such that Z3(u + jv) is positive. Network Section 2 is the s a m e  a s  Section 2 of figure 14 
Again the existence of a. is proved by augmenting Z(s) by a surplus factor and then 

identifying the even par t  of the augmented Z(s) with the even par t  of Z(s) obtained f rom 

figure 15. 

Section 1 Section 2 

Figure 15. - New network realization fo r  Z(s) of degree two 

when Z(u + jv) is complex. 



In equation (58), augment Z(s) by the factor ( s  + a0)2, where a. > 0. Multiplying 
numerator and denominator by the factor gives Z(s) a s  

where 

and the even part of Z(s) is given by 

Comparison of equations (78) and (32) shows that now there a r e  additional even part 
zeros a t  s = *ao of order  two. The same argument a s  used in Pa r t  (1) is used to iden- 
tify the even part of Z(s) in equation (78) with the even part of Z(s) obtained by analyzing 

the network. 
The procedures of Pa r t  (1) a r e  used in appendix C to show that there exist two posi- 

tive values of a. and, further, that C3 is always positive. Summarizing the results 
of this part  and appendix C, then, i t  has been demonstrated that figure 15 is a valid rep- 
resentation of Z(s) when Z(u + jv) is complex. The values of ao, C1, C2, and C3 a r e  
positive and can be found from the following equations: 



where the rt of equation (C13) is used to represent  the two equations needed f o r  the de- 

termination of ao. As indicated in appendix C, the quantity within the brackets ( raised 

to the 1/2 power) i n  equation (C13) is positive by virtue of the inequality equation (41); 

that is, 

This fact a s s u r e s  that the coefficient of a. is r e a l  and, hence, that the required solu- 

tions of equation (C13) exist. 



This investigation has been limited to complex even part  zeros  with a positive r ea l  

par t .  The question is now could the resul ts  be somehow extended to even par t  zeros  on 

the imaginary ax is?  In the section Coefficient Conditions, it was found that 

corresponds to imaginary axis even part  zeros.  The coefficient of a. in  equation ((213) 

can be rewritten as 

Letting e2 = 0 shows that the expression inside the brackets is s t i l l  positive and there- 

fore  there again exist two values of a. that satisfy equation ((213). What about C3? In 

equation (C11), if e = 0, C3 = Z3(jv) = 0. This corresponds to a ze ro  on the imaginary 

axis for  Z3(s). The network of figure 15 is modified by deleting the gyrator,  as shown 

in figure 16. Moreover, equation (C13) can also be used to find the values of a0 for  

Section 1 Section 2 

Figure 16. - New network realization for  Z(s) of degree two f o r  

imaginary even par t  zeros.  



Z(s) of degree two with even part  zeros  on the imaginary axis.  

Part (2) has shown that Z(s) of degree two with Z(u + jv) complex can be real ized 

by the network of figure 15. In fact, since there a r e  two values of a. that satisfy the 

realizability conditions, two networks a r e  possible for  Z(s), each with i t s  own ao. 

COMPLEX EVEN PART ZEROS AND OPERATOR EVEN PART IDENTIFICATION 

Driving point impedances of degree two were already discussed and now those r e -  

sul ts  a r e  extended to driving point impedances of any degree. 

The complex even part  zero  is again designated by u + jv, where u > 0 and v # 0. 

As in  the second degree case, Z(u + jv) can be positive o r  complex with a positive r ea l  

part .  If Z(u + jv) is positive, Z i ( s )  is shown to  be found directly f rom equation (19) and 

the network corresponds to  figure 8 o r  9. When Z(u + jv) is complex, the resultant net- 

works a r e  the same  as figures ll(a) and 12(a). 

In the following section, extended coefficient conditions a r e  shown for  Z(s) cor re-  

sponding to those found in the section Coefficient Conditions. The resul ts  fo r  the cases  

for  positive and complex Z(u + jv) a r e  discussed in the sections Complex Even P a r t  

Zeros with Z(u + jv) Positive and Complex Even Part Zeros with Z(u + jv) Complex - 
Operator Even P a r t  Identification, respectively. 

Only the resul ts  a r e  shown herein; the proofs a r e  given in reference 14. 

Extended Coef f ic ient  Condi t ions 

A s e t  of coefficient conditions s imi la r  to equations (42) and (43) must be found in 

o rde r  to  extend the resul ts  of the section DRIVING POINT IMPEDANCES OF DEGREE 

TWO. As previously mentioned, Hazony 3iscovered that if Z(s) is a positive r e a l  func- 

tion, C1(s) defined by 

is also a positive r e a l  function. Thus, Z(s) can be  written in the form 



The numbers A, 93, C,  and D a r e  all positive and a r e  given by 

where a and 0 a r e  positive o r  conjugate complex with a nonnegative rea l  part. The 

numbers A, B, C, and D a r e  called the extended coefficients of Z(s). As can be 

easily verified, the corresponding second degree Z(s) of equation (30) is obtained f rom 

equation (80) by letting < 1 ( ~ )  = 1. 
Let a! be identified with u + jv and P with u - jv. Under these circumstances,  

Hazony showed that the degree of bl(s) is two less  than the degree of Z(s). It is shown 

in reference 14 that the coefficient conditions 

and 

correspond to equations (42) and (43), respectively. The equal sign in  equation (85) cor-  

responds to zeros  of the even part  on the imaginary axis. 

The following relations, derived in  reference 14, a r e  useful for  future work and a r e  

used in the remainder of the text 



where 

Equations (87), (88), a s  well as the inequalities of (86) a r e  used in the proofs of the 

following sections. 

Complex Even Part Zeros with Z(u + jv) Positive 

Since Z(u + jv) = C1 is positive, Theorem I can be applied immediately. Using the 
identifications a l  = u + jv and a2 = u - jv gives equations (18) and (19) in  the form 

and 

2 respectively. Using equation (87) for  u + v and equation (88) fo r  u gives equations 

(89) and (90) as 

and 

Thus, Za(s)  and Z;(s) a r e  now expressed in t e r m s  of the extended coefficients of Z(s). 

~ h e b ~ e r a t o r s  v l ( s )  o r  V2(s) ( see  section Operators fo r  Z;(s)) could be used to 

synthesize the networks of figure 8 o r  9. When Z(u + jv) > 0, however, there exists 

another constraint on the extended coefficients of Z(s) in addition to the inequalities of 

equation (86). The condition Z(u + jv) > 0 can be t rue  if and only if B = D, The net- 

works corresponding to figures 8 and 9 a r e  shown in figures 17(a) and (b). The element 

values a r e  in t e rms  of the extended coefficients of Z(s) and the degree of the terminating 



(a) Ser ies  resonant. 

,--. 

(b) Paral le l  resonant. 

F igure  17. - Fialkow-Gerst network realization when 

Z (u + jv) is positive. 

impedances is two less  than the degree of Z(s). The network of figure 17(a) could also 
have been obtained by letting B = D in figure 4, the network associated with the Hazony 

synthesis. 

Complex Even Part Zeros w i th  Zlu + jv) Complex -, Operator Even Part  Ident i f icat ion 

Since Z(u + jv) = C1 is not positive, Theorem I cannot be applied directly. Instead, 

4 2 



procedures a r e  found for which the network realization consists of the cascaded operator 

networks discussed in the section A New Cascaded Operator Network. 

This section is divided into two parts .  In P a r t  ( I ) ,  i t  is shown that Z(s) can be 

realized as the cascaded operator network of figure f l ( a ) .  Although this was a l so  shown 

by Fialkow and Gerst, a new proof is used here  based on an extension of the even part  

identification technique. (See section Complex Even P a r t  Zeros with Z(u + jv) Complex - 
Even P a r t  Identification. ) The new proof is also used in Part (2), where it is shown that 

Z(s) can be realized as the new cascaded operator network of figure 12(a). 

(1) The driving point impedance is written a s  

where A, B, C, and D a r e  found by using equations (81) to  (84). The inequality B # D 
is a constraint on Z(s) since, as already shown, B = D implies that Z(u + jv) is posi- 

tive, which contradicts the present  condition that Z(u + jv) is complex. Suppose the syn- 

thesis  of equation (93) is the cascade of two network sections as il lustrated in figure 18. 

Section 1 is obtained from figure 9 by applying Special Case 1 of the section Network 

Synthesis and equations (16) and (17). The value of C1 is Z(k), and the terminating 

impedance of the section is given by 

1 z3 (s) = ----- 
zi(s) 

The s a m e  reasoning as was used in  DRIVING POINT IMPEDANCES OF DEGREE TWO 

is used here  where a value of k is assumed which forces  the imaginary part  of 

Z3(u + jv) to be zero. Under this  condition, Z3(u + jv) is now positive and Section 2 can 

be constructed by using Special Case 2 and figure 8. Using the identification al = u + jv 

and a2 = u - jv, Zl(s) can be obtained from equation (91), since the even part  zeros  of 

Z3(s) and Z(s) a r e  identical. The quantity C3 is defined by 

C3 = Z3(u + jv) 

The terminating impedance of Section 2 is two degrees less  than Zg(s), since al and 

a2 were  chosen to correspond to zeros  of the even part .  

The validity of figure 18 depends on the existence of a valrte of k such that C g .  is 
positive. This can be  done by f i r s t  augmenting Z(s) by the function associated with 

Richards theorem. Then, identification i s  made of the even past of the augmented Z(s) 



-- 
Section 1 Section 2 

Figure 18. - Fialkow-Gerst network realization when 
Z(u + jv) is complex. 

with the even part  of Z(s) obtained from figure 18. 

Let the function C2(s) be defined a s  

where k > 0 .  Since C1(s) is a positive r ea l  function, then by Richards theorem, C2(s) 

is also a positive r ea l  function. Eliminating bl(s) from equations (93) and (94) results 

in 

where 



It is interesting to note the difference in the preceding augmenting procedure and the 

one used in Pa r t  (1) of the section Complex Even Par t  Zeros with Z(u + jv) Complex - 
Even Par t  Identification. In equation (58), Z(s) is augmented by multiplying the numer- 

ator  and denominator by the factor s + k. The construction of Z(s) in equation (93), 
however, suggests the introduction and substitution of the function CZ(s) of equa-tion (94). 

The use of Richards theorem to augment a positive r ea l  function is also used by Hazony 

in reference 9, section 9.7. 

A proof is developed that extends the even part identification method by combining it 
with the impedance operator procedure. The operator concept is useful here because i t  

takes the problem of the driving point impedance of any degree and essentially reduces it 
t o  the second degree case.  The combined impedance operator and even part synthesis is 

also used by Hazony in reference 9, section 9.7, where the procedure is called imped- 

ance operator even part  synthesis. Therefore, the new proof is considered a s  an exten- 

sion of impedance operator even part  synthesis. 

Finding a driving point impedance from i ts  even part was discussed previously. 

Since an impedance operator is a driving point impedance, it can also be found from its 
even part.  Further, i f  the impedance operator is a minimum reactance positive r ea l  

function, the impedance operator found in this way is also unique. Suppose the operator 

is defined a s  

where Z(s) is both equation (95) and the driving point impedance of figure 18. Since 

V(s) of equation (95) and the V(s) of figure 18 a r e  being identified, their respective even 

parts  can also be identified. 

It is shown in reference 14 that the values of k, C1, and C3 a r e  positive and can 

be found from the following expressions: 



The constants A, B, C, and D a r e  calculated f r o m  equations (81) to (84), and equa- 

tion (79) is used to find cl(s).  

P a r t  (1) is concluded by comparing the resul ts  here  with the resul ts  of the second 

degree case.  In order  to reduce the Z(s) in equation (93) to the corresponding Z(s) in 

equation (58), s e t  C1(s) = 1. The latter condition also implies that Cl(k) = 1.  Further,  

if C1(s) = cl(k) = 1 in the definition of C2(s), equation (94), C2(s) = 1 .  It can be easily 

shown that setting cl(s) = Cl(k) = C2(s) = I in the equations here reduces them to their 

corresponding equations of the second degree case. The network of figure 18 also cor- 

responds to figure 14 when C1(k) = C2(s) = 1. Thus, the resul ts  of the second degree 

case  can be  considered a s  a special case of the resul ts  here.  

(2) In this par t ,  i t  i s  shown that Z(s) can be realized a s  the new cascaded operator 

network of figure %2(a). The driving point impedance Z(s) is written as 

Suppose the synthesis of equation (101) is the one shown in figure 19. Network Section 1 
is obtained from figure 10 by applying Special Case 3 of the section Network Synthesis 

and equation (20). The value of Cl  i s  Z(a) and the value of C2 is Zi(a),  which can 

be evaluated by using equation (21). The impedance terminating network Section 1 is 

If the same  argument i s  used here  as was used in P a r t  (2) of Complex Even Part Zeros 

with Z(u + jv) Complex - Operator Even P a r t  Identification, it is assumed that a value 



Section 1 Section 2 

Figure 19. - New network realization when Z(u + jv) is complex. 

of a can be  found such that Z3(u + jv) is positive. Network Section 2 is the s a m e  as 
Section 2 of figure 18. Again, the existence of a is proved by twice augmenting Z(s) 

with the function associated with Richards theorem, and then identifying the even part  of 

the augmented Z(s) with the even part  of Z(s) obtained f rom figure 19. 

Let the functions C2(s) and C3(s) be defined as 

and 

where a > 0. By Richards theorem, both C2(s) and C3(s) a r e  positive sea l  functions. 

Eliminating C1(s) and C2(s) f rom equations (101) to  (103) results in 



where 

The procedure of P a r t  (I)  is used in reference 14 to show that there  exist  two posi- 

tive values of a and fur ther  that C3 is always positive. 

It has been proved that figure 19 is a network representation of Z(s) when Z(u+ jv) 

is complex. The values of a, C1, C2, and C3 a r e  positive and can be found from the 

following expressions: 



where the * of equation (106) i s  utilized to  represent  the two factors  of equation (105). 

The  quantity within the braces (raised to  the 1/2 power) in equation (106) is positive as 
a consequence of the inequality of (86); that is, 

This  condition a s su re s  that the coefficient of a is r ea l  and hence that the required solu- 

tions of equation (105) exist. 

Here  the investigation is limited to  complex even part  zeros with a positive r e a l  

par t .  Now the resul ts  will be extended to even part  zeros on the imaginary axis .  From 

equation (85) it was found that 

corresponds to imaginary axis even part  zeros .  The coefficient of a i l k  equation (106) 

can be rewritten a s  



Letting E~ = 0, the expression inside the braces is s t i l l  positive and therefore there 

again exist  two values of a that satisfy equation (105). Also, in equation (109) i f  

E = 0, Cg = Z3(jv) = 0. This corresponds to a zero  on the imaginary axis f o r  Z3(s), 

and the network of figure 19 is modified by deleting the gyrator,  as shown in  figure 20. 

Moreover, equation (105) can be used to find values of a for  Z(s) with even part  zeros  

on the imaginary axis.  

Section 1 Section 2 

Figure 20. - New network realization for  imaginary even part  zeros.  



The resul ts  of P a r t  (2) can be summed up in the following theorem. 

Theorem 11: 

Let Z(s) be  a minimum reactance positive rea l  function such that Z(u + jv) is com- 

plex, where u + jv, for  u > 0 and v # 0, is a zero of the even part  of Z(s ) .  Then 

Z(s) can always be realized by the network of figure 19 in which the degree of the termi-  

nating impedance is a t  least two less  than the degree of Z(s).  
A comparison of the resul ts  of P a r t  (2) with the resul ts  of the second degree case  is 

now made. At the end of P a r t  ( I ) ,  it was shown that this was equivalent to setting 

cl(s)  = C1(a) = c2(s) = 1. In addition, if c2(s) = C2(a) = 1 in the definition of C3(s) 

(eq. (103)), C3(s) = 1. By setting C1(s) = C1(a) = C2(s) = C2(a) = C3(s) = 1, the equations 

of this section reduce to their corresponding equations in P a r t  (2) of the section Complex 

Even P a r t  Zeros with Z(u + jv) Complex - Even P a r t  Identification. The network of fig- 

u r e  19 also corresponds to figure 15 when el(") = C2(s) = 1. 

Example : 
Let it be required to real ize 

as the network of figure 19. The ze ros  of the even part  of Z(s) a r e  the numbers +2, -2, 

I/& + jG, I/& - jG, - l / ~  + j*, -116 - j 

and 

gives Z(u + jv) and Z(u - jv) a s  the complex quantities 



and 

The values of A, B, C, D, and E f rom equations (81) to (84) a r e  as follows: A = 2/3, 

B = 1/9, C = 1, D = 1, and E = f i / 3  Using equation (79) resul ts  in 

Solving for  the values of a in equation (105) gives a = 1.00 and a = 5.54. F o r  a = 1, 
the numbers C1 and C2 can be obtained f rom 

and C3 is the number 

where either equation (108) o r  (109) is used to find C3. F o r  the terminating impedance, 

c1(a)c2(s), 

and 

where c2(s) is found f rom equation (102). Now since the numbers B, D, E, a, C1, C2, 

C3, cl(a), and the function c2(s) a r e  a l l  available, the element values of the network 

corresponding to  figure 19 can be obtained. Figure 21 il lustrates the synthesis of Z(s).  

Note that the terminal impedance is of degree two less  than Z(s). 



Figure 21. - Example synthesis. 

CONCLUSION 

A new cascaded driving point impedance synthesis has been found based on a n  exten- 

s ion of the Fialkow-Gerst theorem. In order  to apply the new theorem it was necessary 

t o  determine a method of selection of constants such that ultimate degree reduction is 
assured .  A new proof was developed based on an extension of impedance operator even 

pa r t  synthesis. This proof is sufficiently general to include always the case  of the 

imaginary =is even part  zeros  and sometimes to include the case  of even part  zeros  on 

the r ea l  axis.  The resultant networks contain reactive elements, unity coupled t rans-  
fo rmers ,  and gyrators.  The new realization reduces the number of gyrators  used com- 

pared with the Fialkow-Gerst cascaded network. Moreover, any positive r e a l  function 

can  be realized as a cascade of these lossless  sections terminated in  a resistance. 

Lewis Research Center, 

National Aeronautics and Space Administration, 

Cleveland, Ohio, August 21, 1969, 

120-27. 



SYMBOLS 

extended coefficients of any degree Z(s) 

coefficients of most general second degree Z(s) 

coefficients of second degree Z(s) 

a value of al 

a se t  of r ea l  o r  complex numbers 

coefficients of most general second degree Z(s) 

a se t  of r ea l  o r  complex numbers 

positive numbers 

number derived f rom coefficients of any degree Z(s) 

load voltage 

source voltage 

voltages 

even part  

number derived f rom coefficients of second degree Z(s) 

r e a l  gyrator coefficient 

power ratio 

a function of k 

currents  

imaginary part  

s e t  of numbers 

s e t  of numbers 

a value of aI 

a value of k 

inductances 

even functions of s 

even functions of s 



network 

odd functions of s 

degree of Z(s) 

odd functions of s 

odd part  

power delivered to load 

maximum power available from source 

load resistance 

source resistance 

rea l  part 

a set  of numbers among i 

complex variable 

a se t  of numbers among j 

a value of a l  

impedance operators 

factors 

derivative of Z(s) with respect to s 

positive real  functions of s 

open circuit impedance parameters 

positive real  functions of s 

imaginary part  of s 



FORM OF SECOND DEGREE DRIVING POINT IMPEDANCE 

This appendix shows that ail seeorld degree driving point impedances can be written 

in  the form 

The most general second degree driving point impedance can be written a s  

A. + sA1 + sLA2 
Z ( s )  = 

2 Bo + sB1 + s B2 

where the coefficients of the polynomials a r e  positive numbers. Equation (B2) can be 
factsrect into 

and multiplying both s ides  by BO/AO, gives equation (133) in  the form 

Fina,l&y, the coefficients of equations (BP) and (B4) a r e  identified to give 



Thus, when it is required to r:?nthesize the Z(s) of equation (B2), equation (B4) can be  

realized instead, and then a l l  the impedances in the network a r e  multiplied by AO/BO. 



APPENDIX C 

PROOF OF EXISTENCE OF POSITIVE a. A N D  Cg 

This appendix proves that two positive values of a. exist and further that C3 is 

always positive. Examining figure 15 shows that the driving point impedance of Section 1 
is given by 

and equation (62) can be used to describe Section 2.  Combining equations (C l )  and (62) 
resul ts  in  

where 



and the even par t  of Z(s) is now 

Comparison of equations (C3) and ('98) shows that the numerators a r e  identical. The 

procedure used in P a r t  (1) is repeated to  identify even and odd polynomials of s in  the 

denominators. Identifying the even polynomials m8 and mfO resul ts  in  

and equating coefficients of like powers gives 

Solving for  C3 in equation (C5) gives 

where C2 has been replaced by i t s  value from equation (636). Similarly, identifying the 

odd polynomials ng and n10 resul ts  in 



and equating corresponding coefficients yields 

Taking the ratio of equations (C9) and (C10) results in 

The existence of a. can be proved f rom an  equation in  t e rms  of a. and the coefficients 

of Z(s).  Equating (C7) and (C11) gives 

o r  rearranging yields 



The fourth degree equation (eq. (C12)) can be factored into two second degree equations 

with r e a l  coefficients. Consider (C12) as having the form 

Factoring equation (C12) as indicated resul ts  in 

where the is used to represent  the two equations. Fo r  each factor to  have r e a l  coef- 

ficients, the quantity within the brackets ( raised to the 1/2 power) is required t o  be posi- 

t ive.  Already this is known to  be t rue  s ince by equation (41) 

This simplification turns out to be a most important key to the proof of the existence of 

ao, for  now each factor of equation (C13) is of a form s imi la r  to the equation in k 

(eq. (74)). Thus, the methods of P a r t  (1) a r e  applied to show that there  exists one posi- 
tive value of a. for  each factor.  Moreover, the equations represented by equation (C13) 

can be used to find these values. 

The network of figure 15 is valid if i t  can be proved that a. and C3 a r e  positive. 

Having shown that there exist two values of a. that a r e  positive, it can now be proved 

that Cg is also positive. Consider the following expressions: 

A little thought reveals that regardless  of the relative magnitudes of b and d, equations 

((214) and (C15) a r e  of opposite sign o r  both zero.  If equation (C14) is positive o r  zero, 



then, since G I  and a0 a r e  positive, C3 cf e q ~ a t i o n  (C7)  is also positive. Similarly, 

if equation (C15) i s  positive o r  zero, C3 of equation ( C l l )  is positive. Thus, C3 is 

a-lways positive. 

In summary, then, it bas been shown that t h ~  :e exist two positive values of a. a s  

the soh t ions  of the eq~~zitions represented by e g a t i o n  (643).  Further ,  i t  was also 

proved that C3 i s  a l ~ ~ ~ a y s  positive and can be found from equation (C7) or  (C11). 
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